• utc.edu.ec
  • Correo Institucional
Repository logo
  • English
  • Español
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Search
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Naula Saquinga, Henry Sebastián"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predicción de la demanda de energía eléctrica a corto plazo utilizando redes neuronales artificiales.
    (Ecuador: Latacunga: Universidad Técnica de Cotopaxi: UTC., 2021-08) Naula Saquinga, Henry Sebastián; Oscurio Ordoñez, Darwin Stalin; Quinatoa, Carlos
    La implementación de la redes neuronales artificiales se realizó debido al problema que existe en la predicción de la demanda eléctrica a corto plazo el cual afecta el desempeño del flujo de carga, análisis de seguridad, coordinación hidrotérmica, plan de mantenimiento preventivo de los generadores y despacho económico, por lo que se ha optado en el desarrollo de una herramienta computacional, basado en redes neuronales artificiales mediante el programa computacional MATLAB, utilizando datos reales del alimentador PRI12 Santa Rosa de Pichul – San Gerardo, esto permitió realizar un análisis del comportamiento de la demanda eléctrica horaria con el objetivo de obtener una predicción optima. El programa está conformado por la interfaz gráfica (GUIDE) con tres módulos tales como datos históricos, entrenamiento de la red neuronal y predicción de la demanda eléctrica, para este proyecto de investigación la RNA está compuesta por una capa de entrada, una capa oculta (función de activación tangente hiperbólico) y una capa de salida (función de activación lineal), utilizando el algoritmo de entrenamiento levenberg-marquardt mediante 288 retrasos, 10 neuronas, 80 % de datos de entrenamiento, 10 % datos de validación y 10 % de datos de prueba, así obteniendo resultados adecuados de rendimiento del 1.01 x 10^-7, de igual forma presenta el mayor ajuste al comportamiento de la serie de datos con un error porcentual del 1,60 %, finalmente en base de las curvas estadísticas de los valores reales y pronosticados se obtiene un error del 0,99%, obteniendo una predicción a corto plazo satisfactoria.
  • Servicios
  • Biblioteca
  • Catalogo digital
  • Bibliotecas Virtuales
  • Enlaces de interés
  • CES
  • SENESCYT
  • Centro de Información
  • Universidad Técnica Cotopaxi
  • Av. Simón Rodríguez s/n Barrio El Ejido Sector San Felipe.
  • Latacunga - Ecuador
  • Llámanos
  • Tel: (593) 03 2252205 / 2252307 / 2252346.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Adaptado por: Desarrollo de software U.T.C